61 research outputs found

    An analysis of a class of variational multiscale methods based on subspace decomposition

    Get PDF
    Numerical homogenization tries to approximate the solutions of elliptic partial differential equations with strongly oscillating coefficients by functions from modified finite element spaces. We present in this paper a class of such methods that are very closely related to the method of M{\aa}lqvist and Peterseim [Math. Comp. 83, 2014]. Like the method of M{\aa}lqvist and Peterseim, these methods do not make explicit or implicit use of a scale separation. Their compared to that in the work of M{\aa}lqvist and Peterseim strongly simplified analysis is based on a reformulation of their method in terms of variational multiscale methods and on the theory of iterative methods, more precisely, of additive Schwarz or subspace decomposition methods.Comment: published electronically in Mathematics of Computation on January 19, 201

    Fractal homogenization of multiscale interface problems

    Get PDF
    Inspired by continuum mechanical contact problems with geological fault networks, we consider elliptic second order differential equations with jump conditions on a sequence of multiscale networks of interfaces with a finite number of non-separating scales. Our aim is to derive and analyze a description of the asymptotic limit of infinitely many scales in order to quantify the effect of resolving the network only up to some finite number of interfaces and to consider all further effects as homogeneous. As classical homogenization techniques are not suited for this kind of geometrical setting, we suggest a new concept, called fractal homogenization, to derive and analyze an asymptotic limit problem from a corresponding sequence of finite-scale interface problems. We provide an intuitive characterization of the corresponding fractal solution space in terms of generalized jumps and gradients together with continuous embeddings into L2 and Hs, s<1/2. We show existence and uniqueness of the solution of the asymptotic limit problem and exponential convergence of the approximating finite-scale solutions. Computational experiments involving a related numerical homogenization technique illustrate our theoretical findings

    Nonsmooth Schur-Newton methods for vector-valued Cahn-Hilliard equations

    Get PDF
    We present globally convergent nonsmooth Schur-Newton methods for the solution of discrete vector-valued Cahn-Hilliard equations with logarithmic and obstacle potentials. The method solves the nonlinear set-valued saddle-point problems as arising from discretization by implicit Euler methods in time and first order finite elements in space without regularization. Efficiency and robustness of the convergence speed for vanishing temperature is illustrated by numerical experiments

    A posteriori error estimates for elliptic variational inequalities

    Get PDF
    We derive hierarchical a posteriori error estimates for elliptic variational inequalities. The evaluation amounts to the solution of corresponding scalar local subproblems. We derive some upper bounds for the effectivity rates and the numerical properties are illustrated by typical examples

    Adaptive monotone multigrid methods for some non-smooth optimization problems

    Get PDF
    We consider the fast solution of non-smooth optimization problems as resulting for example from the approximation of elliptic free boundary problems of obstacle or Stefan type. Combining well-known concepts of successive subspace correction methods with convex analysis, we derive a new class of multigrid methods which are globally convergent and have logarithmic bounds of the asymptotic convergence rates. The theoretical considerations are illustrated by numerical experiments

    A Variational Approach to Particles in Lipid Membranes

    Get PDF
    A variety of models for the membrane-mediated interaction of particles in lipid membranes, mostly well-established in theoretical physics, is reviewed from a mathematical perspective. We provide mathematically consistent formulations in a variational framework, relate apparently different modelling approaches in terms of successive approximation, and investigate existence and uniqueness. Numerical computations illustrate that the new variational formulations are directly accessible to effective numerical methods

    Numerical Homogenization of Fractal Interface Problems

    Get PDF
    We consider the numerical homogenization of a class of fractal elliptic interface problems inspired by related mechanical contact problems from the geosciences. A particular feature is that the solution space depends on the actual fractal geometry. Our main results concern the construction of projection operators with suitable stability and approximation properties. The existence of such projections then allows for the application of existing concepts from localized orthogonal decomposition (LOD) and successive subspace correction to construct first multiscale discretizations and iterative algebraic solvers with scale-independent convergence behavior for this class of problems

    Fractal homogenization of a multiscale interface problem

    Get PDF
    Inspired from geological problems, we introduce a new geometrical setting for homogenization of a well known and well studied problem of an elliptic second order differential operator with jump condition on a multiscale network of interfaces. The geometrical setting is fractal and hence neither periodic nor stochastic methods can be applied to the study of such kind of multiscale interface problem. Instead, we use the fractal nature of the geometric structure to introduce smoothed problems and apply methods from a posteriori theory to derive an estimate for the order of convergence. Computational experiments utilizing an iterative homogenization approach illustrate that the theoretically derived order of convergenceof the approximate problems is close to optimal

    Fractal homogenization of a multiscale interface problem

    Get PDF
    Inspired from geological problems, we introduce a new geometrical setting for homogenization of a well known and well studied problem of an elliptic second order differential operator with jump condition on a multiscale network of interfaces. The geometrical setting is fractal and hence neither periodic nor stochastic methods can be applied to the study of such kind of multiscale interface problem. Instead, we use the fractal nature of the geometric structure to introduce smoothed problems and apply methods from a posteriori theory to derive an estimate for the order of convergence. Computational experiments utilizing an iterative homogenization approach illustrate that the theoretically derived order of convergence of the approximate problems is close to optimal
    • …
    corecore